Acta Cryst. (1957). 10, 437

Unit-cell data of the lead niobate PbNb₂O₆. By R. S. ROTH, National Bureau of Standards, Washington 25,

D.C., U.S.A.

(Received 2 January 1957 and in revised form 17 January 1957)

The X-ray diffraction powder pattern of the ferroelectric form of a specimen of pure PbNb₂O₆, melted in a platinum crucible at 1350° C., can be indexed on the basis of an orthorhombic unit cell with a = 17.63, b =17.93, c = 3.868 Å. The powder pattern shows no sign of diffraction peaks caused by a cell with the c axis equal to twice that used, as was originally suggested by Goodman (1953) and Francombe (1956) on the basis of singlecrystal data. The pattern, as indexed in Table 1, obeys the

completely stable in the 'high-temperature' form from room temperature to 700° C. This single phase solid solution at room temperature has a and b parameters very little different from the pure material but a c parameter of 3.873 Å. At 600° C. it was found that the close doublets formerly associated with orthorhombic symmetry were no longer present and the powder pattern could be completely indexed on the basis of a tetragonal unit cell with a = 12.56, c = 3.925 Å (Table 2). This pattern has only

Table 1. X-ray powder diffraction data for hightemperature form of PbNb₂O₆

Table 2. High-temperature X-ray diffraction data for $PbNb_2O_6+2$ wt. % ZrTiO₄ at 600° C. (Cu $K\alpha_1$ radiation)

(Cu $K\alpha_1$ radiation)					
hkl	d_{a} (Å)	I_o	hkl	d_o (Å)	I_o
220	6.25	10	261	2.2838	5
130	5.63	50	800	$2 \cdot 2030$	5
310	5.56	20	280	2.1726	20
040	4.476	10	820	2.1396	25
400	4.405	5	711	2.0961	5
240	3.988	10	660	2.0942	10
420	3.948	5	750	2.0615	5
001	3.859	5	371	2.0073	10
150	3.508	25	480	1.9976	15
510	3.453	20	190	1.9803	10
221	3.288	20	840	1.9766	10
131	3.187	95	002	1.9340	60
311	3.176	100	281	1.8952	10
440	3.138	15	390	1.8875	20
350	3.057	80	821	1.8725	5
530	3.033	85	930	1.8621	10
060	2.985	30	661	1.8433	20
600	2.934	35	312	1.8277	5
041	2.926	4 0	0,10,0	1.7944	5
401	2.902	25	680	1.7823	5
260	2.827	50	860	1.7755	10
620	2.788	35	10,0,0	1.7631	25
241	2.776	55	2,10,0	1.7590	20
421	2.763	85	242	1.7406	15
151	2.599	15	422	1.7360	10
511	2.577	20	950	1.7211	5
170	2.536	5	391	1.6972	5 5
441	$2 \cdot 4383$	5	152	1.6949	9 2
351	$2 \cdot 4000$	10	931	1.0780	о 5
061	2.3641	10	442	1.0480	9 90
370	2.3468	5	352	1.6361	20
730	2.3195	5	532	1.6321	30

extinction rule hkl with h+k = 2n. This extinction rule fits only two possible space groups, D_2^6 -C222 and C_{2i}^{11} -Cmm2, and the compound would then have 10 molecules to the unit cell.

High-temperature X-ray patterns were made on the same specimen in an attempt to determine the symmetry of pure PhNb₂O₆ above its reported Curie temperature of 570° C. At 700° C. it was found that this specimen had reverted almost completely to the low-temperature nonferroelectric form described by Francombe (1956), and this form remained stable at room temperature. However, a specimen of $PbNb_2O_6 + 2wt.\%$ ZrTiO₄ was apparently

 $a\,=\,12{\cdot}56~{\rm \AA}$ hkldo (Å) I, 5 020 6.26120 $\mathbf{45}$ 5.61220 5 4.436001 5 3.928320 30 3.482021 3.326 15121100 3.215040 3.140 15 140 100 3.046330 60 2.955221 70 2.945240 65 2.806131 2.793100 2312.60535 041 2.45055 141 2.4049 $\mathbf{5}$ 10 2502.3339350 20 $2 \cdot 1562$ 060 15 2.0961260 60 1.9868002 80 1.9624351 10 1.8908022 15 1.8717 360 t 061 10 1.8489170/550 10 1.778726115 1.7729132 251.7609451 30 1.7564232 1.711310 361 10 1.6914142 60 1.6504171/551 40 1.6195242 1.610150

one extinction rule of 0kl with k = 2n. Three space groups are possible for this tetragonal symmetry, namely $C_{4v}^2 - P4bm$, $D_{2d}^2 - P\overline{4}b2$ and $D_{4h}^5 - P\overline{4}/mbm$. As the tetragonal structure is no longer ferroelectric it is probable that the material has a center of symmetry; if so, the space group would be $D_{4h}^5 - P4/mbm$.

References

FRANCOMBE, M. H. (1956). Acta Cryst. 9, 683. GOODMAN, G. (1953). J. Amer. Ceram. Soc. 36, 368.